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H uman coronaviruses, along with in-
fl uenza virus, human metapneumovirus, 

respiratory syncytial virus, and rhinovirus, are 
endemic and cause approximately 15% to 30% 
of annual respiratory tract infections. Corona-
virus infections are generally mild in healthy 
adults, obviating any urgent need to develop 
treatments or vaccines. However, outbreaks of 
acute respiratory distress syndrome (ARDS) 
due to novel, highly pathogenic strains—se-
vere acute respiratory syndrome coronavirus 
(SARS-CoV), Middle East respiratory syn-
drome coronavirus (MERS-CoV), and now, 
SARS-CoV-2—have revealed the potency 
and danger of this expanding family of patho-
gens that have the capacity to kill many thou-
sands of people around the world if not geo-
graphically contained.1 
 As in severe SARS and MERS disease, the 
mortality rate is disproportionately high in the 
elderly and patients with preexisting comor-
bidities such as heart disease, diabetes melli-
tus, hypertension, and renal disease.2 Higher 
morbidity in the elderly may partly be attrib-
uted to muted interferon antiviral responses 
(although the suggestive study has not yet 
been peer-reviewed)3 as well as overall lower 
adaptive immunity,2 resulting, paradoxically, 
in longer courses of hyperactivity of the in-
nate immune system (“cytokine storm”).

 ■ A ZOONOTIC INFECTION 

Bats have been implicated as the likely source 
of SARS-CoV-2, as both SARS-CoV and 
MERS-CoV are genetically similar to viruses 
recovered from bats, and bat coronaviruses 
can use human receptors for cell entry.4 How-

ever, phylogenetic studies, looking at sequence-
based virus evolution, suggest that the virus is 
not transmitted directly from bats to humans 
but rather fi rst infects intermediate animal 
hosts in close contact with humans. In the case 
of SARS-CoV, these can be civets or raccoon 
dogs sold at crowded markets; for MERS-CoV, 
they can be domesticated dromedary camels.4
 Transmission from bats to intermediate 
hosts and then to humans, as well as from hu-
man to human, all involve viral adaptation, 
slight changes in viral sequence to improve 
fi tness in the new host. This is not unique 
to coronaviruses, as endemics and pandem-
ics also occur when novel infl uenza A virus 
strains emerge in the human population from 
an animal host.5 Similar to introduction of 
Ebolavirus and human immunodefi ciency vi-
rus 1 by mammals, many other viruses circu-
lating in wild animals have the potential for 
zoonotic transmission.6

 SARS-CoV-2, the causative agent for the 
pandemic corona virus disease of 2019 (CO-
VID-19) outbreak, was fi rst found in Wuhan, 
China, and initial analysis of viral RNA ob-
tained from patients hospitalized in late 2019 
revealed it was 96% identical at the whole-ge-
nome level to a bat SARS-like coronavirus.7 
 Uniquely, SARS-CoV-2 can be transmit-
ted by people who are infected but have no 
symptoms, not just by symptomatic patients. 
Concern about potential spread of SARS-
CoV-2 to household cats has emerged from a 
news report of infection in a tiger in the Bronx 
Zoo. Ferrets can be infected, with intraspecies 
transmission,8 and cats can also be infected 
and transmit the virus to other cats, while 
dogs have low susceptibility. However, it is 
unknown if any of these animals can transmit 
the virus to humans.9
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 ■ STRUCTURE AND GENOME 
OF CORONAVIRUSES

Coronaviruses are spherical enveloped vi-
ruses containing a single strand of positive-
sense RNA (similar to host mRNA) of ap-
proximately 26 to 32 kb.10 Their defi ning 
morphologic features are club-shaped projec-
tions from the viral envelope resembling a 
crown or a solar corona and made of a highly 
glycosylated protein named spike protein. 
Their other 3 structural proteins are the en-
velope, membrane, and nucleocapsid pro-
teins (Figure 1). 
 The first two-thirds of the genome con-
sists of 2 large overlapping open reading 
frames that encode 16 nonstructural pro-
teins, including proteases, RNA-dependent 
RNA polymerase (prRdRp), RNA helicase, 
primase, and others, that form the viral 
replicase complex, a platform to propagate 
viral mRNAs. These nonstructural proteins 
are all potential targets for therapies, which 
would in theory work against all coronavi-
ruses (Figure 2).1,8,10–15

 The remaining portion of the genome in-
cludes interspersed open reading frames for 
the structural proteins, as well as a number 
of accessory proteins generally nonessential 
for replication in tissue culture but capable of 
suppressing immune responses and enhancing 
pathogenesis.10,16

 ■ HOW THE VIRUS GETS IN

Features of coronavirus transmission, replica-
tion, and pathogenesis are determined by both 
the viral genome and the human host.
 Coronavirus spike proteins are key deter-
minants for virus attachment and entry into 
target cells. The receptor for both SARS-CoV 
and SARS-CoV-2 is angiotensin-converting 
enzyme 2 (ACE2),11,12 a cell-surface enzyme 
contributing to control of blood pressure. 
SARS-CoV cell entry is independent of 
ACE2 catalytic activity. 
 Entry involves 2 spike protein subunits, 
which mediate distinct functions. The S1 
subunit mediates ACE2 attachment through 
the receptor-binding domain. The S2 subunit, 
containing the fusion peptide and transmem-
brane domains, drives fusion of viral and host 
cell membranes. To be activated for fusion, the 
spike protein must be cleaved at 2 sites directly 
at the cell membrane, through endosomes, or 
both. The sequence of the cleavage sites, one 
located at the border of S1 and S2 subunits, 
the other (S2´) within S2 just upstream of the 
fusion peptide, provide substrates for a variety 
of cellular proteases and determine cleavage 
effi ciency. 
 The route or routes of infection thus de-
pend on the proteases available in different 
cell types and the protease cleavage sites.17 
This is also demonstrated by involvement of 
the cellular serine protease TMPRSS2 (trans-
membrane protein serine protease 2) and ac-
tivities of furin and endosomal cathepsins B 
and L in SARS-CoV-2 entry.11 TMPRSS2 
activity is also involved in viral spread and 
pathogenesis in SARS-CoV-infected and 
MERS-CoV-infected mouse models.18 
 Host proteases that cleave the S protein 
are also potential targets for antiviral drugs. 
A higher rate of SARS-CoV-2 infections 
compared with SARS-CoV infections may 
be at least partially explained by a higher 
affi nity of spike protein for ACE2.12 The 
sequence divergence in both the receptor-
binding domain and cleavage domains in the 
spike protein between SARS-CoV-2 and the 
bat virus highlight how only a few changes 
are needed to adapt an animal virus to hu-
mans.7,11,12,19 

Only a few 
changes 
are needed 
to adapt 
an animal virus 
to humans

Figure 1. Structure of coronaviruses.
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Figure 2. Overview of COVID-19, SARS-CoV-2 replication, and therapeutic targets.

Upper left. Virus entry entails binding the angiotensin-converting enzyme 2 (ACE2) receptor and 
cleavage by the serine protease TMPRSS2 (in green) to allow fusion with the host membrane. 
Other cellular proteases, eg, furin (in orange), facilitate pH-dependent entry through the endo-
cytic pathway. The predominant entry routes are cell type-specifi c and dependent on availability 
of select proteases. 

Middle. Following uncoating and release of viral RNA into the cytoplasm, translation of open 
reading frame 1a (ORF1a) and ORF1ab produces the polyproteins pp1a and pp1ab. These in turn 
are processed by viral proteases (encoded by ORF1a) to yield 16 nonstructural proteins. Formation 
of the RNA replicase–transcriptase complex (RTC) uses rough endoplasmic reticulum (ER)-derived 
membranes. The RTC drives synthesis of (−)RNAs. Full-length (−)RNA copies of the genome provide 
templates for full-length (+)RNA genomes. Transcription further produces a subset of subgenomic 
RNAs, including those encoding all structural and accessory proteins. 

Right. The translated structural proteins and genomic RNA are assembled into the viral nucleo-
capsid and envelope in the ER–Golgi intermediate compartment, and are subsequently released by 
exocytosis. 

Bottom. Potential strategies for treatment. Anti-TMPRSS2 or chloroquine treatment in experi-
mental animals will reveal effi cacy of targeting select proteases or entry pathways in limiting in-
fection, while simultaneously monitoring effects on innate and adaptive immunity. The replication 
cycle can be blocked at several stages using single or combined treatment paradigms: virus entry 
can be inhibited by antispike antibodies elicited by vaccines to block attachment or by prevent-
ing fusion using relevant protease inhibitors.11 RTC formation and transcription-replication events 
can be targeted using viral protease inhibitors or nucleoside analogues (GS-5734 or EIDD-1931).15 
Interferon (IFN) responsiveness can be increased by early exogenous IFN treatment,13 IFN inducer 
treatment, repression of viral IFN antagonists, and enhancement of host antiviral IFN pathways. 
The “cytokine storm” induced as a host response to rampant virus replication may be targeted 
by administration of select anti-infl ammatory immune modulators, which are already given to 
patients with infl ammatory disorders. Drugs targeting viral replication may also be combined with 
treatments that control detrimental immune responses. The ferret model will provide a useful tool 
to test multiple therapeutic and preventive treatments.8

Based on information in references 1, 10, 12, and 14
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 ■ THE BODY MOUNTS 
AN INNATE IMMUNE RESPONSE 

Interferons I and III are cytokines with critical 
roles in the innate immune response  against 
viral infections.20 Virus-infected cells induce 
and secrete interferon I molecules that bind 
to the cell surface receptor IFNAR (interferon 
III uses a different receptor), thereby triggering 
the Jak-Stat (Janus kinase/signal transducer 
and activator of transcription) signaling path-
way that switches on many antiviral genes. 
The interferon-stimulated genes are then tran-
scribed into RNA and translated into proteins 
that suppress viral replication and spread. 

 ■ HOW THE VIRUS EVADES 
THE HOST RESPONSE

During coevolution with their hosts, viruses 
have learned to counteract the interferon 
antiviral response. Like other human corona-
viruses, SARS-CoV-2 can at least partly 
evade innate immunity to gain a foothold in 
humans, a critically important step in the in-
fection cycle. Although mechanistic insights 
are as yet unavailable, we do have a good un-
derstanding of how other coronaviruses evade 
interferon’s antiviral activity,21 and also how 
we could engage antiviral factors to promote 
interferon activity.22 
 In general, coronaviruses can potently an-
tagonize antiviral innate immunity by inter-
fering with both interferon production and 
the cellular antiviral response.23 For instance, 
mouse coronaviruses and MERS-CoV have 
accessory proteins that block an interferon re-
sponse pathway that degrades the viral RNA 
(by oligoadenylate synthetase and ribonucle-
ase L).24,25 
 The large number of host antiviral mecha-
nisms and distinct viral antagonism at differ-
ent steps in the virus replication cycle have 
made it diffi cult to identify the most relevant 
ones. Not only does each type of coronavirus 
encode different accessory proteins respon-
sible for allowing the virus to escape cellular 
innate immune mechanisms, but distinct cell 
types may respond differently. 
 While we are only just beginning to un-
derstand the functions of the SARS-CoV-2 
accessory proteins, it is clear that there are 
similarities and differences between the acces-

sory proteins of SARS-CoV-2 and those of its 
closest human pathogen relative, SARS-CoV. 
A better understanding of the precise func-
tions of the SARS-CoV-2 accessory proteins, 
especially their interaction with innate im-
mune pathways, could lead to novel antiviral 
drugs that promote the innate immune re-
sponse. The fi nding (not yet peer-reviewed)26 
that SARS-CoV-2 was more sensitive to in-
terferon than SARS-CoV raises hope that 
giving interferon or interferon inducers very 
early in the infection could be benefi cial, and, 
perhaps, less likely to cause harm than using 
interferon later in COVID-19.13 

 ■ WHY DO SOME PEOPLE GET SO SICK, 
BUT OTHERS ARE FINE? 

One of the most problematic features of SARS-
CoV-2 infection is the broad spectrum of dis-
ease, ranging from no symptoms to mild fl u-
like symptoms, anosmia, fever, nonproductive 
cough, dyspnea, and fatigue to acute respiratory 
distress syndrome, the main cause of death. 
While multiple organs, including the heart, 
kidneys, liver, and gastrointestinal tract, are in-
jured, it remains to be resolved to what extent 
tissues are damaged by infection, hypoxia, or 
the immune response. Complications may also 
involve the central nervous system, either by 
direct infection or secondary damage.27,28 
 Different ACE2 expression? ACE2 is ex-
pressed in various cell types of the lung, in-
cluding alveolar epithelial cells, pneumocytes, 
and bronchial transient secretory cells, as well 
as enterocytes of the small intestine, heart 
(pericytes), and kidney. These are the same 
tissues that the virus affects, but studies with 
SARS-CoV indicate that ACE2 expression is 
not the only determinant of susceptibility.29–32 
More research is needed to assess to what 
extent ACE2 surface expression or polymor-
phisms, or other coreceptors and proteoglycan 
moieties, are markers of tissue susceptibility. 
 Renin-angiotensin system dysregulation? 
The fi nding that ACE2 is a primary SARS-
CoV-2 receptor has further led to extensive 
discussion of dysregulation of the renin-angio-
tensin system, which regulates blood pressure 
and electrolyte balance.33–35 Conversion of an-
giotensin I to angiotensin II by angiotensin-
converting enzyme (ACE) activates pathways 
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that lead to infl ammation, vasoconstriction, 
oxidation, and fi brosis. ACE2 activity coun-
terbalances this pathway by cleaving both an-
giotensin I and angiotensin II to shorter pep-
tides, which use distinct receptors to promote 
vasodilation, as well as anti-infl ammatory, an-
tioxidant, and antifi brosis activity. 
 ACE inhibitors and angiotensin II receptor 
blockers are thus commonly used in patients 
with cardiovascular diseases, hypertension, 
and diabetes, promoting the protective effects 
of ACE2. However, increased expression of 
ACE2 by use of antihypertensive drugs in ani-
mal models raised concerns of higher virus in-
fection risk for patients receiving these drugs. 
Nevertheless, current recommendations are to 
continue treatment.34,35 The complexity of the 
renin-angiotensin system will require more 
extensive retrospective analysis of larger and 
ethnically diverse patient groups.        
 Protective host features? The apparently 
large percentage of infections that are asymp-
tomatic is unique to SARS-CoV-2, but many 
of the pathogenic features resemble those ob-
served in SARS and MERS-CoV infections. 
The protective host features underlying the 
asymptomatic infections are currently un-
known, as testing within many countries is 
limited to people presenting with symptoms 
such as severe shortness of breath, coughing, 
and fever. Retrospective studies incorporating 
serum antibody testing and health status will 
provide much-needed insights. 
 Cytokine storm? Severe disease is associ-
ated with lymphopenia and an uncontrolled 
systemic infl ammatory response called a cyto-
kine storm, which ultimately leads to multiple 
organ failure and death.36,37 Autopsy results 
reveal severe damage to endothelial tissue, 
vasculitis-like manifestations, and atrophy of 
secondary lymphoid tissues.37 Early studies in 
COVID-19 patients showed higher plasma 
levels of  interleukin 2 (IL-2), IL-7, granulo-
cyte colony-stimulating factor, C-X-C motif 
chemokine 10, monocyte chemoattractant 
protein 1, macrophage infl ammatory protein 
1a (chemokine [C-C motif] ligand 2), and 
tumor necrosis factor (TNF), but also anti-
infl ammatory IL-10, higher in intensive care 
patients than in nonintensive care patients.38 
Several reports also confi rm high levels of 
IL-6 in severely ill patients.2,39 Retrospective 

clinical investigation of more patient cohorts 
without or with preexisting conditions and of 
those being treated with distinct anti-infl am-
matory immune modulators—eg, anti-TNF, 
anti-IL-6, anti-IL12/IL23, or anti-IL-1 beta—
for immune-mediated infl ammatory condi-
tions will provide much-needed guidance on 
treatment to stem severe COVID-19. 

 ■ ONCE YOU GET IT, 
ARE YOU IMMUNE FOR LIFE? 

Another critical unresolved aspect of COV-
ID-19 is the establishment of adaptive immu-
nity. Lessons from the SARS-CoV epidemic 
indicate that CD4 and CD8 T-cell memory 
lasts for up to 11 years in recovered individu-
als.40–42 A study of a limited number of patients 
hospitalized with mild or severe COVID-19 
revealed humoral immunoglobulin M (IgM) 
and immunoglobulin G (IgG) serum respons-
es to the viral nucleocapsid and spike proteins 
emerging at 10 days after symptom onset, with 
serconversion in a sizable majority of patients 
by 3 weeks.2,43,44 Moreover, the IgG levels cor-
related with virus neutralization titers. 
 Transfusion of convalescent plasma from 
recovered patients had benefi cial outcomes 
in a small number of SARS and COVID-19 
cases.45 Based on preliminary results of conva-
lescent serum as well as in vitro and in vivo 
neutralization studies, clinical trials will be 
launched to evaluate the effi cacy of spike pro-
tein-based vaccines. 
 A concern is the mutation rate of the vi-
rus as it spreads through the population. Vi-
ral genomes are being analyzed throughout 
the world and compiled in large, publicly 
available databases, which collate sequenced 
isolates and look at relationships (https://
nextstrain.org/ncov/global). Although such 
databases currently refl ect a population naïve 
to the virus, similar studies can be conducted 
once vaccines become available to test the ef-
fects of immune pressure on the virus. 

 ■ VIRAL AND HOST TARGETS 
FOR THERAPIES AND VACCINES

There are at least 4 potential therapeutic 
strategies against COVID-19, apart from sup-
portive and oxygenation therapies such as use 
of ventilators: 
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• Direct antiviral drugs against SARS-
CoV-2 (eg, remdesivir)

• Indirect antiviral agents (eg, interferon I, 
interferon inducers, and drugs that target 
host proteins required for infections) 

• Convalescent plasma that contains anti-
bodies against SARS-CoV-2

• Drugs that tamp down the pathogenic hy-
peractive infl ammatory response and cyto-
kine storm later in disease progression.  

 However, we would like to emphasize that 
at present, these strategies are investigational 
only, including the off-label use of existing 
drugs, and may prove to show no effi cacy and 
could be harmful in controlled clinical trials.
 The emergence of 3 highly pathogenic hu-
man coronaviruses within the past 20 years 
predicts that more of them will continue to 
come along. As the timing is unpredictable, 
monitoring and transparent reporting of local 
outbreaks is imperative for early intervention. 
 With respect to currently circulating 
SARS-CoV-2 and limited overall testing, it is 
also unknown whether the virus is affected by 
seasonal changes. While physical distancing is 
an effective control measure to limit acute in-
fection rates, asymptomatic carriers will likely 

continue to spread the virus, leading to ongo-
ing hotspots of symptomatic infection. 
 A major factor infl uencing the future of 
COVID-19 is the ability of recovered people 
to develop protective immunity. However, the 
ongoing yearly infection rates by historically 
circulating coronaviruses,46 as well as evidence 
for already distinct SARS-CoV-2 variants47 
suggest that established immunity may be in-
suffi cient to avoid recurring infections. 
 Clinical trials with drugs targeting viral 
proteins will reveal tolerance of the SARS-
CoV-2 to selective pressure and guide in 
development of strategies that target host 
proteins required for replication.48 Effi cacy 
of vaccination strategies to elicit protective 
antibodies may further uncover the potential 
need for seasonal vaccines like those for circu-
lating infl uenza viruses.  
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