
Type 2 diabetes mellitus (T2DM) is characterized 
by dysregulation of carbohydrate, lipid and protein 
metabolism, and results from impaired insulin secre‑
tion, insulin resistance or a combination of both. Of the 
three major types of diabetes, T2DM is far more com‑
mon (accounting for more than 90% of all cases) than 
either type 1 diabetes mellitus (T1DM) or gestational 
diabetes. Over the past few decades, our understand‑
ing of the development and progression of T2DM has 
evolved rapidly. Its main cause is progressively impaired 
insulin secretion by pancreatic β‑cells, usually upon a 
background of pre-existing insulin resistance in skel‑
etal muscle, liver and adipose tissue1 (BOX 1). Overt 
hyperglycaemia is preceded by prediabetes1,2, a high-
risk condition that predisposes individuals to T2DM 
development (TABLE 1). Prediabetes is characterized 
by any one of the following: impaired fasting glucose 
(IFG) levels, impaired glucose tolerance (IGT) or 
increased glycated haemoglobin A1c (HbA1c) levels. 
Individuals with IFG levels are characterized by fasting 
plasma glucose levels that are higher than normal but 
do not meet the criteria for the diagnosis of diabetes. 
IGT is characterized by insulin resistance in muscle and 
impaired late (second-phase) insulin secretion after a 
meal, whereas individuals with IFG levels manifest 
hepatic insulin resistance and impaired early (first-
phase) insulin secretion2. Individuals with prediabetes 
have HbA1c levels between 5.7–6.4%; they represent 

a heterogeneous group with respect to pathophysio
logy and are clinically very diverse. Annual conversion 
rates of prediabetes to T2DM range from 3% to 11% 
per year3.

The clinical presentation, underlying pathophysio
logy and disease progression in patients with diabe‑
tes can vary considerably among individuals and, on 
occasion, atypical presentation of symptoms can make 
clear-cut classification of T2DM difficult. At the time of 
diagnosis, many patients with T2DM are asymptomatic, 
whereas others present with severe hyperglycaemia or 
even diabetic ketoacidosis. Latent autoimmune diabe‑
tes in adults4 and maturity-onset diabetes of the young5 
can masquerade as T2DM. In asymptomatic individu‑
als, the timing and frequency of testing for prediabetes 
or T2DM are based on the presence or absence of risk 
factors6. Screening in at‑risk individuals is important 
because prediabetes is common and ~30% of individu‑
als with T2DM are undiagnosed. Prevention of dia‑
betes requires identification of individuals who have 
prediabetes and intervention with lifestyle modifica‑
tions (weight loss and exercise) plus antidiabetic and 
anti-obesity medications7–9. The American Diabetes 
Association (ADA) Consensus Conference10 recom‑
mended that high-risk individuals (HbA1c >6.5%; 
BMI ≥30 kg per m2; age ≤60 years) with IGT or IFG 
levels be treated with metformin. Pioglitazone11 and 
combined low-dose metformin and rosiglitazone12 
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Abstract | Type 2 diabetes mellitus (T2DM) is an expanding global health problem, closely linked to the 
epidemic of obesity. Individuals with T2DM are at high risk for both microvascular complications (including 
retinopathy, nephropathy and neuropathy) and macrovascular complications (such as cardiovascular 
comorbidities), owing to hyperglycaemia and individual components of the insulin resistance (metabolic) 
syndrome. Environmental factors (for example, obesity, an unhealthy diet and physical inactivity) and 
genetic factors contribute to the multiple pathophysiological disturbances that are responsible for 
impaired glucose homeostasis in T2DM. Insulin resistance and impaired insulin secretion remain the core 
defects in T2DM, but at least six other pathophysiological abnormalities contribute to the dysregulation of 
glucose metabolism. The multiple pathogenetic disturbances present in T2DM dictate that multiple 
antidiabetic agents, used in combination, will be required to maintain normoglycaemia. The treatment must 
not only be effective and safe but also improve the quality of life. Several novel medications are in 
development, but the greatest need is for agents that enhance insulin sensitivity, halt the progressive 
pancreatic β‑cell failure that is characteristic of T2DM and prevent or reverse the microvascular 
complications. For an illustrated summary of this Primer, visit: http://go.nature.com/V2eGfN
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also are very effective in preventing the conversion of 
prediabetes to diabetes. Lifestyle intervention (weight 
loss and exercise) alone, although initially effective, is 
associated with weight regain in most individuals13–15. 
However, those individuals with prediabetes who 
successfully lose weight and maintain a physical activity 
programme can be expected to benefit from decreased 
conversion to diabetes16, an improved lipid profile and 
reduced cardiovascular risk, including a reduced risk of 
developing hypertension.

T2DM is a complex chronic disorder that requires 
continuous medical care, patient self-management for 
control of abnormal glucose levels, and multifactorial 
risk reduction strategies to normalize blood glucose 
levels, lipid profiles and blood pressure to prevent or 

minimize acute and long-term microvascular complica‑
tions (including retinopathy, nephropathy and neuro
pathy) and macrovascular complications (such as a 
heart attack and stroke)17–19 (TABLE 2). T2DM should be 
viewed and treated as a heterogeneous disorder with 
multiple pathophysiological abnormalities, varying 
susceptibility to complications and varying clinical 
response to therapeutic intervention17–19. Ultimately, 
a true ‘cure’ for T2DM will require the elucidation of 
its molecular aetiology and effective interventions to 
combat the obesity epidemic. In this Primer, we dis‑
cuss the epidemiology, diagnosis, pathophysiology and 
management (present and future) of T2DM.

Epidemiology
T2DM has become a major global public health con‑
cern (FIG. 1). The International Diabetes Federation esti‑
mated that, in 2013, 382 million adults aged 20–70 years 
worldwide had T2DM, with 80% of those affected living 
in low- and middle-income countries20. This number is 
expected to rise to 592 million by 2035 (REF. 20). Areas 
particularly affected by this disease are China and India, 
where the prevalence of T2DM has increased dramati‑
cally despite the relatively low prevalence of obesity21. 
Given the same body mass index (BMI), Asians tend 
to have a higher percentage of body fat mass, greater 
abdominal obesity and less muscle mass22, which might 
explain their increased predisposition to T2DM. In 
addition, poor nutrition in utero and in early life, com‑
bined with overnutrition in later life, can contribute 
to the accelerated trajectory of the T2DM epidemic, 
especially in populations undergoing rapid nutrition 
transitions, involving changed food habits and reduced 
physical activity. Prevalence of T2DM is slightly higher 
in men than in women20.

Epidemiological studies have improved our under‑
standing of the behavioural, lifestyle and biological 
risk factors for T2DM (BOX 2). Increasing adiposity, as 
reflected by higher BMI levels, is the single most impor‑
tant risk factor for T2DM (FIG. 2). In addition, particu‑
lar dietary components are associated with a reduced 
risk of T2DM, independent of body weight, including 
higher intake of whole grains, green leafy vegetables, 
nuts and coffee; lower intake of refined grains, red and 
processed meat, and sugar-sweetened beverages; 
and moderate intake of alcohol23. Physical inactivity is 
a key behavioural risk factor, and both aerobic activ‑
ity and resistance training are beneficial24. Sedentary 
behaviour, such as prolonged television watching, is 
associated with increased risk25. Both short (≤5 hours 
per night) and long (≥9 hours per night) duration of 
sleep are associated with increased risk26, as is rotating 
shift work27. In addition, cigarette smoking is a signifi‑
cant risk factor for developing T2DM, independent of 
body weight and other risk factors21. Although genetics 
play an important part in the development of T2DM28, 
the ongoing diabetes epidemic cannot be explained by 
novel genetic mutations but is instead largely explained 
by the epidemic of obesity29. Nevertheless, genes deter‑
mine how we respond to changes in the environment, 
and vice versa.
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Box 1 | Glucose homeostasis

Following a meal, insulin secretion is stimulated and glucagon secretion is inhibited by 
the combined actions of hyperinsulinaemia and hyperglycaemia. Approximately 
60–70% of insulin secretion is dependent on the release of the incretin hormones, 
including glucagon-like peptide 1 (GLP1) and gastric inhibitory polypeptide (GIP) by the 
L cells and the K cells in the gut, respectively. Collectively, the changes in glucose, 
insulin and glucagon levels suppress hepatic glucose production, stimulate muscle 
glucose uptake and inhibit lipolysis; the latter results in a reduction in the free fatty acid 
concentration in blood, which further enhances the effect of insulin on the liver and 
muscle. Type 2 diabetes mellitus is associated with major disturbances in all of the 
preceding physiological responses: insulin secretion is impaired; fasting plasma 
glucagon levels are increased and fail to suppress normally after a meal; basal 
hepatic glucose production is increased and fails to suppress normally after a meal; 
muscle glucose uptake is impaired; fasting plasma free fatty acid levels are increased 
and fail to suppress normally following a meal; and the post-meal rise in GLP1 and GIP 
is normal or modestly decreased. However, there is severe β‑cell resistance to the 
stimulatory effect of both GLP1 and GIP on insulin secretion.
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Our understanding of the pathophysiology of 
T2DM has been aided by the discovery of novel 
disease biomarkers. High blood concentrations of 
pro-inflammatory cytokines, such as C‑reactive pro‑
tein, interleukin‑6 (IL‑6) and tumour necrosis factor 
(TNF), are associated with an increased risk of T2DM30, 
whereas a high concentration of adiponectin, which has 
anti-inflammatory effects, is associated with a reduced 
risk31. Lower levels of sex hormone-binding globu‑
lin are associated with increased risk32, as are higher 
blood concentrations of branched-chain and aromatic 
amino acids33. Gut flora metabolites might predict 
future risk of T2DM because the gut microbiota is 
involved in energy extraction from the diet, modifica‑
tion of host gene expression, and increasing metabolic 
endotoxaemia (the level of endotoxins in blood) and 
chronic inflammation34.

In summary, up to 90% of T2DM cases are poten‑
tially preventable by following a healthy diet, main‑
taining a BMI of ≤25 kg per m2, exercising for at least 
30 minutes per day, avoiding smoking and consuming 
alcohol in moderation35,36.

Mechanisms/pathophysiology
T2DM is a multifactorial disease involving genetic and 
environmental factors. The pathophysiological changes 
are characterized by β-cell dysfunction, insulin resist‑
ance and chronic inflammation, all of which progres‑
sively hamper control of blood glucose levels and lead 
to the development of micro- and macrovascular com‑
plications. With respect to hyperglycaemia, at least eight 
distinct pathophysiological abnormalities1,37 contribute 
to impaired glucose homeostasis (FIG. 3), and these fac‑
tors are already well established early in the natural his‑
tory of T2DM. To the ‘ominous octet’ we can add two 
additional pathophysiological abnormalities: activa‑
tion of inflammatory pathways and impaired insulin-
mediated vasodilation, which both contribute to muscle 
insulin resistance.

Genetic factors
T2DM clusters in families and is heritable. The relative 
risk of siblings of a patient with T2DM developing the 
disease compared with families in which none of the sib‑
lings has the disease is ~2–3, but this figure increases to 
30 if two siblings have T2DM38. The risk of developing 
T2DM is higher when the mother has the disease com‑
pared with when the father has the disease39. The risk 
of developing T2DM is also markedly increased with a 
BMI of ≥30 or a non-normal fasting glucose concentra‑
tion of >5.5 mmol l–1 (REF. 40). By comparison, the relative 
risk for T1DM is ~15 and the relative risk for maturity-
onset diabetes of the young is ~50. Identification of the 
genes that are responsible for complex polygenic diseases 
such as T2DM has been a challenge. A breakthrough 
came in 2007 with genome-wide association studies 
(GWASs) that reported common genetic variants associ
ated with T2DM. A single-nucleotide polymorphism 
(SNP) in TCF7L2 (already reported a year earlier on 
the basis of gene linkage analysis) showed the strong‑
est association with T2DM41,42, but SNPs in other genes 
have also been shown to be linked to T2DM, includ‑
ing in SLC30A8, FTO, CDKAL1, CDKN2A, CDKN2B, 
HHEX, IGF2BP2, GCKR and others42–44. Subsequent 
GWASs have increased this list to more than 100 com‑
mon variants associated with T2DM45. Most variants are 
in introns, and it is more correct to talk about genetic 
loci than genes. Accordingly, defining the mechanisms 
by which these loci increase the risk of T2DM is diffi‑
cult. Exceptions are a few variants in exons, which influ‑
ence the function of the gene, such as SLC30A8 (which 
encodes a zinc transporter that is required to store insu‑
lin)46, KCNJ11 (which encodes an ATP-dependent potas‑
sium channel) and GCKR (which encodes a glucokinase 
regulatory protein)43–45. Intronic variants might influ‑
ence the expression of a nearby gene (in cis) or a distant 
gene (in trans), but this has been verified only for a small 
number of genes, such as a variant in the MTNR1B gene 
(which encodes a melatonin receptor)47. Cultured human 
islets carrying risk alleles have shown reduced β-cell 
function and survival. Gaining mechanistic insights into 
these SNPs has proved to be difficult, and animal data 
have not been very informative. For example, the human 
mutation in SLC30A8 protects against T2DM, whereas it 

Table 1 | Diagnostic reference values

Parameters Normal* Prediabetes T2DM

Haemoglobin A1c <5.7%‡

<6.0%§

5.7–6.4%‡

6.0–6.4%§

≥6.5%

Fasting plasma glucose <100 mg per dl‡

<110 mg per dl§

100–125 mg per dl‡

110–125 mg per dl§

≥126 mg per dl

Two‑hour plasma OGTT <140 mg per dl 140–199 mg per dl ≥200 mg per dl

OGTT, oral glucose tolerance test; T2DM, type 2 diabetes mellitus. *Normal glucose 
metabolism. ‡American Diabetes Association. §World Health Organization. 

Table 2 | Multifactorial risk reduction outpatient goals of therapy in T2DM

Parameter ADA AACE IDF (WDF)

Glucose

Fasting glucose (mg per dl) 70–130* <110 115

2 hour postprandial glucose 
(mg  per dl)

<180* <140 <160

Haemoglobin A1c (%) <7 ≤6.5 <7.0

Lipids

LDL cholesterol (mg per dl) <70‡ 70‡ <70‡

Non-HDL cholesterol (mg per dl) NR <130

<100‡

<97

HDL cholesterol (mg per dl) >40 in men

>50 in women

>40 in men

>50 in women

>39

Triglycerides (mg per dl) <150 <150 <200

Blood pressure

Systolic pressure/diastolic pressure 
(mm Hg)

<140/80* <130/80 ≤130/80§

AACE, Association of Clinical Endocrinologists; ADA, American Diabetes Association; 
HDL, high-density lipoprotein; IDF, International Diabetes Federation; LDL, low-density 
lipoprotein; NR, no recommendation; T2DM, type 2 diabetes mellitus; WDF, World Diabetes 
Foundation. *Individualized goals. ‡High-risk or established cardiovascular disease. 
§Age 70–80 years goal <140/90 mmHg, and age >80 years goal <150/90 mmHg.
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predisposes to the disease in mice46. Other animal data 
have been more rewarding. Linkage to impaired insulin 
secretion in a polygenic model for T2DM, the GK rat, 
was explained by a variant in the ADRA2A gene, result‑
ing in overexpression of the α2A‑adrenergic receptor 
in islets48. As pretreatment of human islet cells with an 
inhibitor of the receptor, yohimbine, normalized insu‑
lin secretion, the authors treated human carriers of the 
variant with the same inhibitor, which resulted in a dose-
dependent improvement in insulin secretion49. Impaired 
β-cell function has also been associated with epigenetic 
modifications50 and microRNA patterns51 that are likely 
to increase the fraction of cases in which inheritance is 
a relevant pathogenetic factor42.

Notably, these genetic variants only have modest 
effects, increasing risk by 10–20%, and have thus been 
maintained during hundreds of generations. In fact, the 
majority of non-diabetic people carry risk variants for 
T2DM, and the average frequency of a T2DM‑associated 
risk allele is 54%45. Despite this high prevalence and only 
modest risk increase, these variants have provided novel 

insights into the pathogenesis of T2DM. A prospective 
study of ~2,700 individuals, 150 of whom developed 
T2DM during 8 years of follow‑up, tested the effect of 
a high genetic risk (highest quartile; ≥12 risk alleles) 
and low genetic risk (lowest quartile; ≤8 risk alleles) of 
T2DM and showed that all individuals became more 
obese and thereby insulin resistant regardless of high 
or low genetic risk. However, more high-risk people 
could not increase their insulin secretion to meet the 
demands imposed by insulin resistance and therefore 
developed T2DM52.

The majority of heritability (85%) cannot be 
explained by the currently identified SNPs. Alternative 
possibilities to explain the heritability are: disease 
heterogeneity (T2DM may not be a genetically uni‑
form disease), gene–environment interactions and epi
genetic mechanisms (DNA methylation and chromatin 
modifications). Some variants, such as those for KCNQ1 
(which encodes a voltage-gated potassium channel), 
show strong parent-of‑origin effects; KCNQ1 is methyl‑
ated and imprinted in fetal but not in adult life when 
inherited from the mother53.

β‑cell function
Insulin resistance is the earliest detectable abnormal‑
ity in individuals who are likely to develop T2DM1,54,55. 
However, overt T2DM does not occur unless β‑cells are 
unable to secrete sufficient amounts of insulin to offset 
the insulin resistance50,56,57. Multiple factors contribute 
to β‑cell failure, including ageing58, genetic abnormali‑
ties45, incretin hormone (glucagon-like peptide 1 (GLP1) 
and gastric inhibitory polypeptide (GIP)) resistance and/
or deficiency59,60, lipotoxicity37,61,62, glucotoxicity63, insu‑
lin resistance leading to β‑cell stress1,37, hypersecretion 
of islet amyloid polypeptide (IAPP)64, reactive oxygen 
stress65 and activation of inflammatory pathways37.

β-cell physiology. In human islets, β-cells constitute 
~60% of cells and are intermingled with glucagon-
producing α‑cells (30%), somatostatin-producing 
δ-cells (10%) and pancreatic polypeptide-producing 
cells (1%)66. Within the islet, β-cells form sparse sub
clusters, which show functional connectivity through 
gap junctions67. Each islet contains 100–500 μU of insu‑
lin, so that the whole endocrine pancreas (~1 million 
islets, weighing 0.9 g) contains 10 days’ worth of sup‑
ply for a healthy adult68. β-cells communicate with 
each other and with the other islet endocrine cells 
through connexin proteins and other cell–cell adhe‑
sion complexes67. Moreover, endocrine cells can influ‑
ence one another via hormones released into the blood. 
Finally, non-hormonal endocrine cell products (such 
as ATP and zinc) and neurotransmitters influence 
β-cell function.

β-cells in T2DM. In post-mortem specimens from 
patients with T2DM, β-cell mass is reduced by 30–40% 
compared with specimens from non-diabetic subjects69. 
Morphometric measures, however, overlap widely 
between individuals with or without T2DM, and β-cell 
mass quantification based on insulin immunostaining 

Figure 1 | Prevalence of T2DM and IGT.  a | In each box, the top values are the number 
of people with type 2 diabetes mellitus (T2DM) (in millions) in 2013, and the middle 
numbers are an estimate of the number of people expected to have T2DM in 2035. 
The bottom value is the percentage increase from 2013 to 2035. b | The number of people 
with T2DM and impaired glucose tolerance (IGT) (in millions) by region for the years 2013 
and 2035. Data are obtained from the International Diabetes Federation Diabetes Atlas. 
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might lead to underestimation owing to β-cell degranu‑
lation70. Loss of β-cells in T2DM is believed to occur 
via apoptosis71 and dysregulated autophagy72. β-cell 
proliferation does not seem to differ between diabetic 
and non-diabetic islets; whether neogenesis is impaired 
in T2DM is uncertain. Vascular disarray and amyloid 
deposition73 contribute to altered cytoarchitecture in 
T2DM islets, especially in patients with long-standing 
disease. The quantitative functional impact of struc‑
tural changes in human T2DM islets is still incom‑
pletely defined73. Insulin resistance feeds back to the 
β-cell by raising its set point (more insulin is secreted 
at any serum level of glucose). This chronic adaptation 
is probably mediated by small increments in circulat‑
ing glucose levels (such as those that occur in obese 
normal glucose-tolerant individuals) as well as by other 
factors, such as raised levels of free fatty acids (FFAs)74. 
In addition, insulin resistance promotes a relative pre‑
ponderance of α‑cells over β-cells74, possibly due to 
selective β-cell apoptosis as well as through a process 
of dedifferentiation and subsequent redifferentiation 
and to a progressive loss of β‑cell mass. In culture, islets 
isolated from patients with T2DM show reduced insulin 
release in response to glucose and a higher threshold for 
the initiation of insulin secretion compared with islets 
isolated from healthy controls75. Similar changes in insu‑
lin secretion can be induced in islets isolated from non-
diabetic individuals by prolonged exposure to increased 
concentrations of FFAs (in particular, palmitate)76 or 
glucose75, and in vivo77.

Insulin secretion. β-cells integrate inputs from substrates 
(such as glucose, FFAs, arginine, fructose and amino 
acids), hormones and nerve endings to adjust insulin 
release in response to changing demands (for example, 

fasting–feeding cycles, exercise and stress) on a minute-
to‑minute basis in order to maintain normal blood 
glucose levels, and inter-individual differences affect 
this adjustment. For example, a lean, insulin-sensitive 
adult might need as little as 0.5 U of insulin to dispose 
of an oral load of 75 g of glucose over 2 hours, whereas 
an obese, insulin-resistant, glucose-intolerant person 
might require 45 U to perform the same task (~90‑fold 
inter-individual difference). In vivo tests in humans 
using intravenous or oral glucose, arginine, sulfonylureas 
(antidiabetic drugs) or mixed meals have demonstrated 
impaired β‑cell function in overt T2DM. However, reli‑
able quantitation of in vivo β-cell dysfunction requires 
some form of modelling78. Absolute insulin secretion in 
response to an oral glucose challenge can be normal or 
even increased in T2DM (FIG. 4a), except in long-standing, 
poorly controlled disease, in which absolute insulin 
secretion is reduced. However, when insulin secretion 
rates are plotted against the concomitant plasma glucose 
concentrations, patients with T2DM secrete substan‑
tially less insulin than non-diabetic controls (FIG. 4b). 
This decline in β-cell glucose sensing occurs along a 
continuum extending from normoglycaemia through 
prediabetes to decompensated diabetes in adults79 and 
children80, and is a potent predictor of progression to 
diabetes independently of insulin resistance and classic 
phenotypic predictors79. Absolute insulin secretion is a 
positive antecedent of deteriorating glucose tolerance. 
Furthermore, the ability of β-cells to respond to the rate 
of increase in plasma glucose concentration (rate sensi‑
tivity) is impaired in individuals with T2DM79.

Antecedent hyperglycaemia and high levels of incre‑
tin hormones (GLP1 and GIP) potentiate glucose-
stimulated insulin release in healthy individuals. In 
patients with T2DM, glucose-mediated potentiation 
of insulin release is increased compared with normal 
glucose-tolerant individuals (owing to the hyperglycae‑
mia); incretin potentiation, however, is severely compro‑
mised81. The incretin defect is not reversed by reducing 
the plasma glucose concentration82.

Whenever an intervention results in a reduction in 
plasma glucose concentrations, fasting insulin secre‑
tion rate and total insulin output in response to glucose 
are reduced compared with the non-treated condition, 
but β-cell glucose sensitivity is improved. For example, 
successful bariatric surgery leads to partial recovery of 
β-cell function83. This indicates that a β-cell mass deficit 
alone is unlikely to be the cause of diabetes and that, 
even in advanced T2DM, many β-cells are alive but 
‘stunned’ or ‘disguised’, and therefore amenable to being 
revitalized by intervention84 (FIG. 5).

Insulin resistance
Obesity and physical inactivity lead to insulin resist‑
ance, which together with a genetic predisposition45, 
place stress on β‑cells, leading to a failure of β‑cell 
function and a progressive decline in insulin secre‑
tion1,2,7,57,85. Insulin resistance precedes T2DM by many 
years1,2,54,55. Insulin resistance is not only present in 
muscle and the liver1,84,85, the two tissues responsible for 
the majority of glucose disposal following carbohydrate 

Box 2 | Risk factors for T2DM

•	Older age

•	Non-white ancestry

•	Family history of type 2 diabetes mellitus (T2DM)

•	Genetic factors

•	Components of the metabolic syndrome (increased waist circumference, increased 
blood pressure, increased plasma triglyceride levels, and low plasma high-density 
lipoprotein (HDL) cholesterol levels and small dense low-density lipoprotein (LDL) 
cholesterol particles)

•	Overweight or obese (body mass index (BMI) of ≥25 kg per m2)

•	Abdominal or central obesity (independent of BMI)

•	Polycystic ovary syndrome

•	History of atherosclerotic cardiovascular disease

•	Unhealthy dietary factors (regular consumption of sugary beverages and red meats, 
and low consumption of whole grains and other fibre-rich foods)

•	Cigarette smoking

•	Sedentary lifestyle

•	History of gestational diabetes or delivery of newborns >4 kg in weight

•	Presence of acanthosis nigricans (hyperpigmentation of the skin)

•	Some medications

•	Short and long sleep duration and rotating shift work

•	Psychosocial and economic factors
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ingestion, but also in adipose86,87, kidney88, gastro
intestinal tract89, vasculature90 and brain91,92 tissues, and 
pancreatic β-cells93–95. In muscle, multiple abnormali‑
ties contribute to insulin resistance, including defects 
in insulin signalling, glucose transport, glucose phos‑
phorylation, glycogen synthesis, pyruvate dehydro
genase complex activity and mitochondrial oxidative 
activity1,37,95. In the liver, insulin resistance, together 
with insulin deficiency, hyperglucagonaemia, enhanced 
glucagon sensitivity and increased substrate (fatty acids, 
lactate, glycerol and amino acids) delivery96–99, leads 
to  increased gluconeogenesis, which is responsible 
for the increased basal rate of glucose production and 
fasting hyperglycaemia1. Also, insulin resistance in the 
kidney and augmented renal gluconeogenesis88 con‑
tribute to fasting hyperglycaemia. Impaired suppres‑
sion of hepatic glucose production, decreased hepatic 
glucose uptake, muscle insulin resistance, reduced non-
insulin-mediated glucose uptake100,101 and excessive 
renal glucose reabsorption102 contribute to postprandial 
hyperglycaemia in T2DM. In addition, insulin resistance 
in the vascular endothelium impairs the vasodilating 
effects of insulin, thereby further reducing not only its 
own delivery but also glucose delivery103,104.

Molecular mechanisms of insulin resistance. Binding 
of insulin to its receptor activates insulin receptor tyro
sine kinase and phosphorylation of a family of insulin 
receptor substrates (IRSs), especially IRS1 and IRS2 
(REF. 105) (FIG. 6). These phosphorylated IRS proteins 
bind to and activate intracellular signalling molecules, 
most important of which is phosphatidylinositol 
3‑kinase (PI3K). PI3K promotes glucose transporter 
type 4 (GLUT4) translocation to the plasma mem‑
brane, resulting in glucose uptake into skeletal muscle, 
and phosphorylates and inactivates the transcription 
factor forkhead box protein O1 (FOXO1), altering 
transcription of downstream genes. Insulin also stim‑
ulates the RAS–mitogen‑activated protein kinase 
(MAPK) pathway.

Insulin resistance in obesity and T2DM has mainly 
been linked to the PI3K pathway106,107. Insulin resist‑
ance is usually associated with increased serine 

phosphorylation of IRS proteins, which inhibits tyro
sine phosphorylation, leading to insulin resistance108,109. 
In some cases, serine phosphorylation also increases IRS 
degradation, further contributing to the insulin resist‑
ance110. The causes of increased serine phosphorylation 
are multifactorial, including ectopic lipid accumula‑
tion, mitochondrial dysfunction, inflammation and 
endoplasmic reticulum (ER) stress.

Ectopic lipids and PKCs. Ectopic lipid accumulation in 
muscle37,111 and the liver37,112–114 induces insulin resist‑
ance by increasing tissue diacylglycerol (DAG) levels115, 
which lead to activation of members of a class of protein 
kinase C (PKC): PKCθ in muscle107, and PKCδ116 and 
PKCε117 in the liver. These PKCs phosphorylate ser‑
ine residues in IRS proteins, thereby inhibiting insulin 
signalling. Genetic knockdown of the genes encoding 
PKCθ in muscle118, PKCδ116 or PKCε117 in the liver, or 
of the genes encoding one of the upstream enzymes 
involved in DAG production or accumulation119 
ameliorates lipid-induced insulin resistance. Consistent 
with this observation, the levels of PKCθ in muscle and 
of PKCδ and PKCε in the liver are increased in obesity 
and T2DM116,120,121. In addition, animal models of obe‑
sity and T2DM have increased tissue levels of ceramides, 
which are linked to insulin resistance122. Ceramides and 
DAGs might have different roles in promoting insu‑
lin resistance depending on the length of fatty acid 
chains123 and sites of cellular compartmentalization124. 
Many treatments that improve insulin sensitivity, such 
as caloric restriction or thiazolidinediones, also reduce 
ectopic lipid content and tissue DAG content.

Mitochondrial dysfunction. Mitochondrial dysfunc‑
tion has been observed in the liver, muscle, adipose 
tissue and even the brain, including and the hypothala‑
mus, in rodents and humans with obesity, T2DM and 
metabolic syndrome125. The cause is both a reduction 
in mitochondrial density119,126 and impaired mitochon‑
drial functioning secondary to aberrant expression of 
different components of the oxidative phosphorylation 
system127–129. Altered mitochondrial function contrib‑
utes to insulin resistance in multiple ways. In adipose 
tissue, mitochondrial dysfunction has been associated 
with impaired secretion of adiponectin, a potent insulin-
sensitizing adipokine127,130,131. In other tissues, mito‑
chondrial dysfunction has been suggested to increase 
levels of reactive oxygen species, which activate redox-
sensitive serine kinases to phosphorylate IRS proteins 
and produce insulin resistance132. Whether mitochon‑
drial dysfunction is the cause or result of insulin resist‑
ance remains a topic of debate133. However, given the 
key role of ectopic lipid deposition in causing insulin 
resistance, mitochondrial dysfunction associated with 
reduced mitochondrial fatty acid oxidation is at the very 
least an important exacerbating factor in this process133.

Inflammation. Systemic inflammation is a well-
documented contributor to insulin resistance. Increased 
levels of pro-inflammatory cytokines, such as IL‑6 and 
TNF, and increased numbers of macrophages and other 

Figure 2 | Association between BMI and T2DM.  Data obtained from REFS 321,322. 
BMI, body mass index; T2DM, type 2 diabetes mellitus.
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inflammatory cells are observed in adipose tissue, liv‑
ers and sera of patients and animals in insulin-resistant 
states134. Pro-inflammatory cytokines induce insulin 
resistance by activating downstream kinases, includ‑
ing IκB kinase-β (IKKβ), JUN amino-terminal kinase 1 
(JNK1; also known as MAPK8) and p38 MAPK, which 
can contribute to the phosphorylation of serine residues 
in IRS proteins135,136 and stimulate production of sup‑
pressors of cytokine signalling (SOCS), which block the 
action of IRS proteins137,138. Blocking TNF activity with 
antibodies or knockout of its receptor improves insulin 
sensitivity in obese mice139, but TNF-specific blocking 
agents do not improve glycaemic control in patients 
with T2DM140. Conversely, pharmacological and genetic 
inhibition of the IKKβ–nuclear factor‑κB (NF‑κB) path‑
way improves insulin sensitivity in mice135,141,142 and 
improves glycaemic control in patients with T2DM143, 
albeit modestly.

Macrophage infiltration in adipose tissue is a key 
aspect of insulin resistance144 and is characterized 
by an increase in the numbers of pro-inflammatory 
M1 macrophages (classic macrophages) as well as 

T helper 1 (TH1), TH17 and CD8+ T cells, and a reduc‑
tion in the numbers of less-inflammatory cells, such 
as M2 macrophages, regulatory T cells (TReg cells) and 
TH2 cells145–147. Inflammation occurs primarily in adipose 
tissue and the liver142,148. Macrophage infiltration in adi‑
pose tissue stimulates lipolysis, and increased levels of 
IL‑6 can stimulate hepatic gluconeogenesis and cause 
hepatic insulin resistance149. Changes in adipose inflam‑
mation have been observed not only in obese mice but 
also in lean mice with differences in genetic predisposi‑
tion to obesity and insulin resistance150. These inflam‑
matory cells themselves are insulin responsive, and 
knockout of the insulin receptor in these lineages pro‑
tects against obesity-induced inflammation and systemic 
insulin resistance151.

Altered lipid metabolism can affect inflammation by 
activating Toll-like receptors (TLRs). Indeed, TLR4 is an 
important component of the innate immune response 
and is activated by fatty acids. Increased FFA levels 
can also increase the activity of IKK and JNK, cause 
serine phosphorylation of IRS proteins and block IRS 
tyrosine phosphorylation152.

Figure 3 | The ‘ominous octet’ of hyperglycaemia in T2DM.  Insulin resistance in muscle and the liver, and impaired 
insulin secretion by the pancreatic β‑cells are the core defects in type 2 diabetes mellitus (T2DM). β‑cell resistance to 
glucagon-like peptide 1 (GLP1) contributes to progressive failure in the function of β‑cells, whereas increased glucagon 
levels and enhanced hepatic sensitivity to glucagon contribute to the excessive glucose production by the liver. Insulin 
resistance in adipocytes results in accelerated lipolysis and increased plasma free fatty acid (FFA) levels, both of which 
aggravate the insulin resistance in muscle and the liver and contribute to β‑cell failure. Increased renal glucose 
reabsorption by the sodium/glucose co-transporter 2 (SGLT2) and the increased threshold for glucose spillage in the urine 
contribute to the maintenance of hyperglycaemia. Resistance to the appetite-suppressive effects of insulin, leptin, GLP1, 
amylin and peptide YY, as well as low brain dopamine and increased brain serotonin levels contribute to weight gain, 
which exacerbates the underlying resistance. To the ‘ominous octet’ must be added vascular insulin resistance and 
inflammation, making the ‘decadent decoplet’. AMPK, AMP-activated protein kinase; DPP4, dipeptidyl peptidase 4; IκB, 
inhibitor of NF-κB; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor-κB; RA, receptor agonist; ROS, reactive 
oxygen species; TLR4, Toll-like receptor 4; TNF, tumour necrosis factor; TZDs, thiazolidinediones.
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ER stress and the UPR. The ER is the major site of syn‑
thesis and folding of secreted and integral membrane 
proteins. States that increase protein synthesis or dis‑
rupt normal processing create an imbalance between 
the demand and capacity of the ER, leading to ER 
stress and the unfolded protein response (UPR). As a 
result, three signalling pathways are activated — IRE1α, 
PRKR-like ER kinase (PERK; also known as EIF2AK3) 
and ATF6α153 — to reduce ER stress by ameliorating 
the UPR response. Pathophysiological states, including 
obesity, hyperlipidaemia and T2DM, disrupt this feed‑
back loop by increasing phosphorylation of PERK and 
IRE1α, enhancing splicing of X box-binding protein 1 
(XBP1) and activating JNK154,155. Conversely, weight 
loss156 and administration of chemical chaperones that 
reduce ER stress157 are associated with reduced UPR 
activation. Mechanistically, the UPR is thought to lead 
to insulin resistance through IRE1α-dependent activa‑
tion of JNK158. Why ER stress develops in obesity is 
uncertain, but high fatty acid levels can cause ER stress 
and activate the UPR159.

Another possible link between obesity and ER stress 
is the mammalian target of rapamycin (mTOR) signal‑
ling pathway. mTOR, which is involved in the regulation 
of a wide range of cellular functions, exists in two differ‑
ent complexes called mTORC1 and mTORC2 (REF. 160). 
Increased mTORC1 pathway activation blocks insulin 
signalling pathways by reducing insulin-induced tyro
sine phosphorylation of IRS1 and IRS2 (REF. 161) and by 
increasing degradation of IRS1 (REF. 162). Recent studies 
have demonstrated that the p85α regulatory subunit of 
PI3K interacts with XBP1s (the spliced, transcription‑
ally active isoform of XBP1) and promotes the trans‑
location of XBP1s into the nucleus to initiate the ER 
stress response163.

Diabetic complications
Diabetic microvascular complications are closely related 
to the severity and duration of hyperglycaemia164,165. 
Hyperglycaemia promotes the development of micro‑
vascular complications through the activation of six 
major pathways, including enhanced polyol pathway 
flux, increased formation of advanced glycation end 
products (AGEs), increased AGE receptor expression, 
activation of PKC isoforms, enhanced hexosamine flux 
and increased intracellular reactive oxygen species166,167. 
Genetic factors have a pivotal role in determining sus‑
ceptibility to microvascular complications. T2DM also 
affects the macrovasculature, and the incidence of myo‑
cardial infarction, peripheral vascular disease and stroke 
is markedly increased37,168. Reactive oxygen species 
impair angiogenesis, activate several pro-inflammatory 
pathways and cause epigenetic changes that result in 
long-lasting expression of pro-inflammatory genes that 
persists after glycaemia is normalized. These same bio‑
chemical and molecular mechanisms that contribute to 
the microvascular complications also contribute to the 
macrovascular complications166,167.

Accelerated atherosclerotic cardiovascular disease 
is associated with several risk factors, including insulin 
resistance and hyperinsulinaemia, activation of inflam‑
matory pathways and the presence of multiple cardio
vascular risk factors (such as hypertriglyceridaemia, 
reduced high-density lipoprotein (HDL) cholesterol, 
small dense low-density lipoprotein (LDL) particles169, 
hypertension, endothelial dysfunction, increased 
plasminogen activator inhibitor 1 levels, visceral obesity, 
and non-alcoholic steatohepatitis or non-alcoholic fatty 
liver disease)37,170. Hypertension is twofold–threefold 
more common in people with T2DM and greatly 
increases the risk of macrovascular complications 

Figure 4 | Insulin secretion in response to glucose.  a | Characteristic insulin secretory response (reconstructed by 
deconvolution of plasma C‑peptide levels) to oral glucose in patients with type 2 diabetes mellitus (T2DM) and in 
body mass index (BMI)-matched non-diabetic individuals. Note the higher fasting secretion rate, the initial blunted 
secretory response and the later catch‑up phase (due to higher glycaemia). b | The insulin secretion rates of panel a 
are here plotted against the concomitant plasma glucose concentrations to show the deficit in glucose sensing 
in patients versus normal glucose-tolerant (NGT) controls. Actual experimental data have been averaged and 
interpolated to produce these graphs.
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(such as myocardial infarction, stroke, peripheral vascu‑
lar disease and congestive heart failure), microvascular 
complications (including retinopathy and nephropathy) 
and premature death171. Multiple factors contribute 
to the increased incidence of hypertension in T2DM, 
including disturbed blood pressure circadian rhythms 
(higher nocturnal blood pressure), impaired blood flow 
autoregulation, stiffening of large arteries, increased 
intracellular sodium concentration, increased arterial 
sensitivity to angiotensin II, insulin resistance, endothelial 
dysfunction, obesity and genetic susceptibility172,173.

Diagnosis, screening and prevention
Diagnosis
Diagnostic criteria for diabetes have traditionally relied 
on blood glucose levels. More recently, HbA1c has been 
added174 as an integrated measure of long-term gly‑
caemia (the lifespan of a red blood cell is ~120 days) 
(TABLE 1). However, haemolysis, which reduces red 
blood cell lifespan, can make HbA1c an invalid measure. 
Also, older age, non-white race, high dietary fat intake, 
alcohol consumption, cigarette smoking, liver disease, 
kidney disease and iron deficiency can affect HbA1c 
independently of glycaemia.

Although most clinicians agree that diabetes should 
be defined according to risk of complications, the level 
of hyperglycaemia associated with complications varies 
depending on the complication. Current criteria are 
based on maintaining fasting glucose, post-glucose-
load glucose and HbA1c levels below the threshold 
that is associated with an increased risk of developing 
diabetic retinopathy175.

T2DM diagnosis can be established on the basis of 
an elevated random plasma glucose test (≥200 mg per dl 
with classic symptoms of hyperglycaemia), fasting 
plasma glucose levels (≥126 mg per dl after at least an 
8‑hour fast), 2‑hour post-glucose-load glucose level 
(≥200 mg per dl after 75 g oral glucose) or HbA1c 
(≥6.5%) confirmed by repeat testing unless unequivo‑
cally elevated6 (TABLE 2). However, the risk of developing 
diabetic nephropathy and distal symmetric peripheral 
polyneuropathy is already increased with levels of hyper‑
glycaemia lower than those associated with diabetic 
retinopathy176. In addition, the relationship between 
glycaemia and cardiovascular disease seems to be linear, 
without a clear threshold, which demonstrates the dif‑
ficulty in using single cut points to diagnose a complex 
disease state177.

Screening
Screening for a disease is appropriate if the disease is 
serious; its natural history is understood; it is detectable 
in its preclinical stage; the screening test is acceptable, 
quick, inexpensive and valid; early treatment is more 
effective than late treatment; and screening improves 
outcomes178. T2DM meets these criteria, and in 2014 the 
US Preventive Services Task Force (USPSTF) issued draft 
recommendations supporting screening for abnormal 
blood glucose levels and T2DM in adults179. Specifically, 
the USPSTF recommended that adults ≥45 years of age 
and those who are overweight or obese, or who have 

a first-degree relative with diabetes be screened in pri‑
mary care settings. They also pointed out that most 
racial and ethnic minority groups (African Americans, 
Latinos and Hispanics) are at increased risk compared 
with whites. Other diabetes professional societies 
have long recommended opportunistic screening for 
T2DM within established primary care guidelines in 
high-risk individuals.

Fasting glucose, post-glucose-load glucose and 
HbA1c have limitations as screening tests that are 
related to their acceptability (fasting), time consump‑
tion (2‑hour post-glucose-load glucose level) and cost 
(HbA1c). Some organizations have recommended the 
use of risk models and random capillary glucose levels 
as initial screening tests, but these have not been widely 
adopted180,181. In addition, different cut-off levels to 
define prediabetes have been proposed by international 
organizations182 (TABLE 1). The use of lower thresholds 
to define increased risk of future diabetes improves 
sensitivity (that is, the probability of a positive screen‑
ing test given that the individual is at high risk) but 
lowers specificity (that is, the probability of a negative 
screening test given that the patient is at low risk), and 
decreases the positive predictive value of the test (that is, 
the probability of being at risk given a positive screen‑
ing test). The 2‑hour post-glucose-load glucose level of 
140–199 mg per dl (IGT) is the most-studied marker for 
future diabetes risk, and essentially all randomized clini‑
cal trials (RCTs) that have evaluated the efficacy of inter‑
ventions for diabetes prevention have been performed 
in patients with IGT. Data supporting cut-off levels for 
fasting glucose and HbA1c that define prediabetes are 
more controversial and differ among organizations.

Figure 5 | Schematic representation of the relationship 
between β-cell mass and β-cell function.  In obese 
individuals who are not diabetic, β-cell mass is expanded 
(in some proportion to the degree of weight excess), but 
β-cell function is comparable to individuals with a normal 
body mass index (BMI). Preliminary data show that weight 
loss might cause some reduction in both β-cell mass and 
function in non-diabetic individuals. Average β-cell mass is 
reduced in type 2 diabetes mellitus (T2DM) regardless of 
obesity, but the inter-individual variation is large. β-cell 
function, however, is profoundly impaired. Intervention, 
such as weight loss and/or antihyperglycaemic treatment, 
improves β-cell function but without changes in β-cell mass.
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Prevention
RCTs have conclusively demonstrated that intensive 
lifestyle interventions and medications are effective 
in delaying or preventing the development of T2DM in 
high-risk individuals. The evidence base for these inter‑
ventions is extensive and robust (TABLE 3). Four large 
randomized, controlled clinical trials demonstrated that 
diet and moderate physical activity designed to achieve 
and maintain 5–7% body weight loss reduce T2DM risk 
by 29–58%16,183–185. Lifestyle interventions are associ
ated with improved quality of life (QOL) and are safe, 
cost-effective and effective across different ages, gen‑
ders, and racial and ethnic groups, independent of 
the degree of obesity and hyperglycaemia. Metformin 
reduces the risk by 26–31%184,185, α-glucosidase inhibi‑
tors (AGIs) reduce risk by 25–41%186,187, and thiazoli‑
dinediones reduce risk by 55–72%11,188,189. Observational 
follow‑up of RCT participants has demonstrated that 

the beneficial effects of lifestyle interventions may 
persist over time190–192. Efforts are underway to imple‑
ment lifestyle interventions in primary care and com‑
munity settings. Pharmacological interventions have 
been less widely applied, perhaps owing to the fact 
that no medication is approved by the US FDA for 
diabetes prevention.

Management
Management of T2DM is complicated by multiple 
pathophysiological disturbances1,193 (FIG. 3) and the 
‘ABCDE’ of diabetes management (Age, Body weight, 
Complications, Duration, Education and Expense, and 
Etiology)19. Prevention of microvascular complications 
focuses on glycaemic control164–166, whereas prevention 
of macrovascular complications requires correction of 
classic cardiovascular risk factors that comprise the 
insulin resistance (metabolic) syndrome37 (TABLE 3).

Figure 6 | Mechanisms of insulin resistance.  In adipocytes, insulin resistance (also caused by increased insulin receptor 
substrate (IRS) serine phosphorylation) and inflammation lead to production and release of free fatty acids (FFAs) 
and insulin-resistance-provoking pro-inflammatory cytokines, such as interleukin‑6 (IL‑6), tumour necrosis factor (TNF) and 
resistin. Insulin-sensitizing adipokines, such as adiponectin, conversely, ameliorate insulin resistance. Also, retinol-binding 
protein 4 (RBP4) increases and might contribute to insulin resistance. Plasminogen activator inhibitor 1 (PAI1) does not 
affect insulin resistance but has been implicated in complications of obesity, including accelerated atherosclerosis and 
type 2 diabetes. These factors contribute to the accumulation of toxic lipid metabolites (diacylglycerol (DAG), ceramides 
and acyl-CoAs) in myocytes and hepatocytes, which impair insulin signalling (IRS–phosphatidylinositol 3‑kinase (PI3K) 
pathway) and activate inflammatory pathways (JUN amino-terminal kinase (JNK), IκB kinase (IKK) and mitogen-activated 
protein kinase (MAPK)), which further impair the insulin signal transduction pathway. Mitochondrial dysfunction 
predisposing to DAG accumulation and nuclear protein kinase C (PKC) activation as well as generation of reactive oxygen 
species (ROS) and increased endoplasmic reticulum (ER) stress further exacerbate the insulin resistance95,125. FA, fatty acid; 
mTOR, mammalian target of rapamycin; SOCS, suppressors of cytokine signalling; TLR4, Toll-like receptor 4; TNFR, 
TNF receptor; UPR, unfolded protein response; XBP1, X box-binding protein 1.
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Ideally, HbA1c should be reduced to as close to nor‑
mal without causing adverse effects, of which hypo
glycaemia is the greatest concern16,17,19,193,194. Patients 
with T2DM with HbA1c levels persistently <6.5% do 
not develop retinopathy195. Because obesity and physi‑
cal inactivity are insulin-resistant states associated with 
tissue fat overload (lipotoxicity)37,61, lifestyle modifica‑
tion should be a basic component of all intervention 
programmes16,17. However, despite initial weight loss, 
most patients regain lost weight over the subsequent 
1–2 years13–15. Further, despite successful weight loss, 
~50% of obese individuals with prediabetes still progress 
to overt diabetes192. Thus, most obesity experts recom‑
mend concomitant anti-obesity medications to help to 
promote and maintain weight loss. Mobilization of fat 
from the liver and muscle, and β‑cells improves hepatic 
and muscle insulin sensitivity and β‑cell function37,196,197.

Antidiabetic medications
Achievement of durable glycaemic control requires 
antidiabetic medications that reverse the pathophysio‑
logical defects that are present in T2DM1,198. Because no 
single medication reverses the multiple abnormalities, 
combination therapy has gained widespread accept‑
ance and will continue to grow1,198–201. Normalization 
of HbA1c at the time of diagnosis results in improved 
long-term glycaemic control7,8,200,202,203. For prediabetes, 
pharmacological therapy with thiazolidinediones11,204, 
GLP1 receptor agonists205, metformin192 and AGIs186 
effectively prevents or delays the progression of IGT to 
diabetes (TABLE 4).

Metformin. Metformin is the most commonly pre‑
scribed antidiabetic medication worldwide and works 
by suppressing hepatic glucose production, leading to a 
reduction in fasting plasma glucose levels and HbA1c206. 
Metformin has no effect on β‑cell function206,207 and, in 
the absence of weight loss, does not improve muscle 
insulin sensitivity206; thus, after an initial decrease, 
HbA1c rises progressively207–209. The mechanisms by 
which metformin suppresses hepatic glucose produc‑
tion remain unclear but include inhibition of mito‑
chondrial complex I, activation of AMP-activated 
protein kinase (AMPK), and inhibition of glycolytic 
and/or gluconeogenic enzymes and mitochondrial 

glycerophosphate dehydrogenase210,211. In a study carried 
out in the United Kingdom and United States, cardio
vascular events were significantly reduced in a small 
group of 344 obese patients with diabetes who were 
treated with metformin212.

Drugs that increase insulin secretion. Sulfonylureas aug‑
ment insulin secretion, and the resulting hyperinsulinae‑
mia overcomes insulin resistance, leading to a decline in 
fasting plasma glucose levels and HbA1c. However, after 
the initial decline, HbA1c rises progressively because 
sulfonylureas have no long-term protective effect on 
β‑cell function1,207,209 and might even accelerate failure 
of β‑cell function213. Sulfonylureas commonly cause 
hypoglycaemia and are associated with weight gain, 
and some retrospective studies suggest that they might 
increase cardiovascular events214,215. Compared with 
glibenclamide, the short-acting sulfonylurea, gliclazide 
has been associated with a reduced risk of all-cause 
mortality and cardiovascular death and is less likely to 
cause weight gain and hypoglycaemia216. Stepwise addi‑
tion of sulfonylurea to metformin, or vice versa, is associ‑
ated with progressive failure of β‑cell function and rise in 
HbA1c217. However, because they are inexpensive, met‑
formin and sulfonylureas remain the most commonly 
prescribed oral antidiabetic agents worldwide.

Meglitinides (repaglinide and nateglinide) are short-
acting insulin secretagogues that require administration 
before each meal. Although related with less hypoglycae‑
mia than sulfonylureas, they do not prevent the progres‑
sive decline in β‑cell function and rise in HbA1c that is 
associated with T2DM.

Insulin sensitizers. Thiazolidinediones (pioglitazone 
and rosiglitazone) are the only true insulin-sensitizing 
agents1,37,217,218. They enhance insulin action in skeletal 
and cardiac muscle, the liver and adipocytes1,37,217–219, and 
exert a potent effect on β‑cells to augment and preserve 
insulin secretion220–222. Multiple mechanisms mediate 
their insulin-sensitizing effects: increased insulin signal‑
ling; stimulation of several intracellular steps involved 
in glucose metabolism (GLUT4, glycogen synthase and 
pyruvate dehydrogenase); stimulation of peroxisome pro‑
liferator-activated receptor-γ (PPARγ); PPARγ coactiva‑
tor 1 (PGC1) activation leading to increased fat oxidation; 
proliferation of subcutaneous adipocytes and activation 
of genes involved in lipogenesis; fat redistribution from 
visceral to subcutaneous stores; reduced plasma levels of 
FFAs; a reduction in circulating inflammatory cytokines; 
and an increase in adiponectin levels1,61,217,218. The com‑
bined insulin-sensitizing and β‑cell stimulatory effects of 
thiazolidinediones explain their durable action, which 
was shown to be up to 5 years in the ADOPT study, 
and their ability to reduce HbA1c209,221,222. Pioglitazone 
favourably affects many components of insulin resistance 
(metabolic) syndrome217,218 and reduced the MACE end 
points (myocardial infarction, stroke and cardiovascular 
death) in the PROactive study223. Adverse events (includ‑
ing fluid retention, fat mass gain and trauma-related frac‑
tures in post-menopausal women) are dose related, and 
doses >30 mg per day should be avoided224. Weight gain 

Table 3 | Intervention to delay or prevent T2DM development*

Intervention Risk reduction (%) Refs

Lifestyle (body weight reduction of 5–7%) 29–58 183–185

Metformin 26–31 184,185

Lifestyle and metformin 28 185

Acarbose (α‑glucosidase inhibitor) 25 186

Voglibose (α‑glucosidase inhibitor) 41 187

Troglitazone 55 188

Rosiglitazone 60 189

Pioglitazone 72 11

T2DM, type 2 diabetes mellitus. *In people with impaired glucose tolerance.
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is common with thiazolidinediones, but the greater 
the weight gain, the greater the decrease in HbA1c 
and the greater the improvements in insulin sensitiv‑
ity and β‑cell function220,221. Concerns about the link 
between bladder cancer and pioglitazone have been dis‑
pelled by a 6‑year follow‑up in the PROactive study225 
and a recently completed 10‑year US FDA-mandated 
study226. In a review of approximately one million people 
from six populations, no increase in bladder cancer 
was observed with either pioglitazone (hazard ratio: 
1.01–1.04) or rosiglitazone (hazard ratio: 1.00–1.01)227.

GLP1 modulators. T2DM is associated with severe GLP1 
resistance in β-cells60,228,229. Dipeptidyl peptidase 4 (DPP4) 
inhibitors (sitagliptin, saxagliptin, linagliptin, alogliptin 
and vildagliptin) prolong the half-life of endogenously 
secreted GLP1. As DPP4 inhibitors do not increase (only 
prolong) plasma GLP1 levels, their ability to augment 
insulin secretion and reduce HbA1c is modest230,231. Their 
primary effect to improve glycaemic control is mediated 
by inhibition of glucagon secretion and reduction in basal 
hepatic glucose production232. DPP4 inhibitors have an 
excellent safety profile233. Concerns about pancreatitis have 
not been substantiated in prospective trials233. Two large 
cardiovascular outcome studies have demonstrated a haz‑
ard ratio of 1.0 for the primary end point (MACE) for both 
alogliptin234 and saxagliptin235, although a 27% increase in 
the incidence of hospitalization for congestive heart failure 
was observed with saxagliptin compared with placebo. The 
results of TECOS (sitagliptin) and ELIXIR (lixisenatide) 
presented at the ADA National Science Meeting (2015) 
also showed a hazard ratio of ~1.0 for the primary cardio
vascular end point. Many cardiovascular outcome trials 
with the newer antidiabetic agents are ongoing, and results 
will be reported during the next 2–3 years.

GLP1 receptor agonists (exenatide, liraglutide, albiglu‑
tide, lixisenatide and dulaglutide) cause a pharmacological 
increase in plasma GLP1 levels, markedly augment insulin 
secretion and inhibit glucagon secretion236,237. The increase 
in the levels of plasma insulin and the decrease in those of 
glucagon effectively suppress hepatic glucose production236 
and cause a durable reduction — for up to 3 years — in 
HbA1c237,238. GLP1 receptor agonists promote weight loss 
(resulting in improved insulin sensitivity), delay gastric 
emptying (which is accelerated in patients with new-onset 
diabetes), correct endothelial dysfunction, reduce blood 
pressure, improve the plasma lipid profile and reduce 
C‑reactive protein levels238,239. Combination therapy with 
a GLP1 receptor agonist plus basal insulin has been shown 
to be very effective in reducing HbA1c while preventing 
the weight gain associated with insulin therapy, without 
an increased risk of hypoglycaemia240. Nausea and vomit‑
ing are the most common side effects with GLP1 receptor 
agonists, but these are usually mild and dissipate within 
4–8 weeks. An increased incidence of pancreatitis has not 
been observed in large healthcare databases234,235,241.

Targeting intestinal and renal glucose absorption. AGIs 
(acarbose and voglibose) slow the rate of carbohydrate 
absorption in the intestine and increase meal-stimulated 
GLP1 secretion. The HbA1c‑lowering effect of AGIs is 
modest and comparable to the effect of DPP4 inhibi‑
tors. In a review of 41 RCTs in the Cochrane Database242, 
AGIs reduced HbA1c by 0.8%, which is similar to the 
HbA1c‑lowering effect of gliptins (0.7–0.8%) in two 
different meta-analyses243,244. However, AGIs have been 
shown to decrease the conversion of prediabetes to dia‑
betes in the STOP NIDDM trial186. Adverse effects of 
AGIs are related to the gastrointestinal tract (diarrhoea, 
abdominal pain, nausea and vomiting).

Table 4 | Characteristics of major classes of currently available antidiabetic agents

Drugs Glycaemic 
efficacy 
(HbA1c)

Durability Mechanism of action Body 
weight

CV risk 
factors

CV safety Side effects

Metformin ↓↓ No ↓↓ HGP ↓ ↓ Possibly beneficial212 GI and lactic acidosis

Sulfonylureas ↓↓ No ↑↑ Insulin secretion ↑ Neutral Possibly 
detrimental214,216

Hypoglycaemia

TZDs 
(pioglitazone)

↓↓ Yes ↑↑ Insulin sensitivity

↑↑ β‑cell function

↑↑* ↓↓ Probably beneficial223 Fluid retention

Bone fractures

DPP4 inhibitors ↓ No ↓ Glucagon secretion

↑ Insulin secretion (weak)

Neutral Neutral Neutral234,235 None

SGLT2 
inhibitors

↓↓ Not known ↓↓ Glucosuria

↓↓ Glucotoxicity

↓ ↓ Unknown Genital mycotic infections

Volume-related

AGIs ↓ Not known ↓ Carbohydrate absorption Neutral Neutral Possibly beneficial186 GI

GLP1 receptor 
agonists

↓↓ Yes ↑↑ Insulin secretion

↓↓ Glucagon secretion

↓↓ ↓↓ Not known Nausea and vomiting

Insulin ↓↓ Yes‡ ↓ HGP

↑ Glucose uptake in muscle

↑↑ Neutral Neutral257 Hypoglycaemia

↓, decreased; ↑, increased; AGIs, α-glucosidase inhibitors; CV, cardiovascular; DPP4, dipeptidyl peptidase 4; GI, gastrointestinal; GLP1, glucagon-like peptide 1; 
HbA1c, haemoglobin A1c; HGP, hepatic glucose production; SGLT2, sodium/glucose co-transporter 2; TZDs, thiazolidinediones. *The greater the weight gain, 
the greater the improvements in insulin secretion and insulin sensitivity. ‡Requires increasing insulin dose. The number of arrows defines severity. 
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Sodium/glucose co‑transporter 2 (SGLT2) inhibitors 
(dapagliflozin, canagliflozin and empagliflozin) block 
glucose absorption in the proximal renal tubule245,246. 
They decrease the maximum renal glucose reabsorp‑
tive capacity and, importantly, reduce the blood glucose 
threshold (to <40 mg per dl) at which glucose spills into 
the urine102. The increased glucose removal from the 
body via glucosuria leads to a reduction in plasma glu‑
cose, which results in the amelioration of glucotoxicity, 
with improved β‑cell function and enhanced insulin 
sensitivity as a consequence247,248. Their glucose-lowering 
efficacy is equivalent to that of metformin, and loss of 
calories in urine (4 calories per gram glucose) promotes 
weight loss of ~2.5–3.0 kg245. Because SGLT2 inhibitors 
also suppress sodium transport, they cause mild extra‑
cellular volume depletion and reduce blood pressure 
(~5–6 mmHg in systolic pressure and ~1–2 mmHg in 
diastolic pressure). Their glucose-lowering efficacy is off‑
set by: increased glucose absorption by SGLT1, which can 
reabsorb ~30–40% of filtered glucose following SGLT2 
blockade249, and ‘paradoxical’ stimulation of endogenous 
glucose production associated with increased glucagon 
and reduced insulin secretion247,248. SGLT2 inhibitors can 
be combined with all antidiabetic medications, includ‑
ing insulin. The efficacy of SGLT2 inhibitors is reduced 
when the estimated glomerular filtration rate declines to 
<45–60 ml per min per 1.73m2. Adverse effects include 
genital mycotic infections in female patients, balanitis in 
uncircumcized male patients, urinary tract infections and 
volume-related side effects in older patients and individ
uals taking diuretics. Recently, cases of euglycaemic 
ketoacidosis have been described with SGLT2 inhibitors, 
primarily in T1DM, but also in T2DM. The potential of 
SGLT2 inhibitors to prevent diabetic nephropathy is 
being studied250. Combined SGLT2 and SGLT1 inhibitor 
therapy has considerable appeal. When SGLT2 is blocked, 
modest inhibition (~30%) of SGLT1 can increase gluco‑
suria by ~80%249. Furthermore, 30% inhibition of gut 
SGLT1 produces an acarbose-like effect, which further 
reduces HbA1c by 0.5–0.6%249.

Adding insulin. If oral or injectable antidiabetic agents 
fail to normalize HbA1c, patients with T2DM can be 
treated with insulin, but large doses (>80–100 units per 
day) are often required251. Combining insulin therapy 
with thiazolidinediones or metformin can improve gly‑
caemic control and enable insulin dose reduction. The 
combination of GLP1 receptor agonists with basal insulin 
therapy causes robust HbA1c reduction, while reducing 
insulin dose and promoting weight loss252. Combining 
SGLT2 inhibitors with insulin also effectively reduces 
HbA1c, decreases insulin dose, promotes weight loss 
and reduces hypoglycaemia253. In new-onset T2DM, 
intensive insulin therapy202,203 to reverse the metabolic 
decompensation, such as glucotoxicity and lipotoxicity, 
has proved effective in maintaining glycaemic control 
(HbA1c ~6.0%) for long periods.

Hypoglycaemia
Hypoglycaemia is a potential adverse effect of all 
antidiabetic agents, especially insulin secretagogues 

(sulfonylureas) and insulin254,255. According to the ADA, 
hypoglycaemia is defined as a plasma glucose level of 
<70 mg per dl. Most cases are mild, but severe hypo‑
glycaemia (requiring third-party assistance for recov‑
ery) has been reported in 5–10% or more of individuals 
treated with sulfonylureas and insulin. Hypoglycaemia 
has been associated with myocardial infarction, ven‑
tricular arrhythmias, stroke and weight gain254–256. In the 
ACCORD study, the incidence of severe hypoglycaemia 
and weight gain was 3.1% and 3.5%, respectively, in the 
intensively treated group, and the study was stopped early 
because of an increased incidence of sudden death257. 
Risk factors for hypoglycaemia include use of insulin or 
sulfonylureas, missed meals, strenuous exercise, alcohol 
consumption, interaction with other drugs, advanced age 
and renal or hepatic disease.

Cardiovascular comorbidities
Controversy has arisen about the optimal treatment 
goal for hypertension in T2DM based on results of the 
ACCORD trial258, which reported that targeting a systolic 
blood pressure of <120 mmHg did not reduce the com‑
posite primary outcome of cardiovascular events and was 
associated with more adverse events. This led to a reap‑
praisal of optimal blood pressure levels to a less-stringent 
target of 140/90 mmHg259. However, in ACCORD, patients 
targeted to a systolic blood pressure of <120 mmHg experi‑
enced 40% fewer strokes258, and a meta-analysis of 40 RCTs 
(n = 100,354 participants) reported that a 10 mmHg 
decrease in systolic blood pressure was associated with a 
relative risk reduction (RRR) of 27% for stroke, 13% RRR 
for death, 12% RRR for coronary heart disease events, 13% 
RRR for retinopathy and 17% RRR for albuminuria260. 
Hyperglycaemia is a relatively weak risk factor for cardio
vascular disease in T2DM164, and the anti-atherogenic 
effect of HbA1c reduction might take >10 years to mani‑
fest165. Dyslipidaemia is a major risk factor for cardio
vascular disease in T2DM, and hypercholesterolaemia 
should be treated aggressively (TABLE 2).

Quality of life
T2DM imposes a substantial physical and psychological 
burden on patients, resulting in reduced health status 
and QOL. The relationship between improvements in 
HbA1c, reduced symptoms of hypoglycaemia and hyper
glycaemia, and enhanced QOL was clearly demonstrated 
more than 15 years ago261. Since then, many classes 
of glucose-lowering medications and different types of 
insulin have been approved, but few comparative-
effectiveness studies exist to guide treatment choices on 
the basis of patient‑centred outcomes such as QOL262.

The complexity, burden and adverse effects of dia‑
betes therapies reduce QOL, satisfaction and adher‑
ence to therapy, often leading to suboptimal glycaemic 
control. However, comparative longitudinal studies 
assessing patient-centred outcomes are relatively rare. 
Moreover, when they are used, assessments often lack the 
measurement properties such as sensitivity, responsive
ness and ability to detect changes that are meaningful to 
patients263. As the number of approved diabetes treat‑
ments increases, therapeutic decisions will be made on 
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the basis of outcomes such as QOL, satisfaction and 
treatment adherence. Therefore, future diabetes research 
should be designed to gather high-quality scientific evi‑
dence of comparative treatment effectiveness on the basis 
of patient-centred outcomes.

QOL is multifaceted and can be assessed using sev‑
eral techniques (FIG. 7). Effective measurement of patient-
centred outcomes poses challenges for clinical researchers, 
when deciding among the hundreds of available generic 
and disease-specific questionnaires (for example, see 
PROQOLID (http://www.qolid.org/proqolid)). Although 
QOL outcomes measured through structured, clinic-
based, self-administered questionnaires have been found to 
be responsive to the effects of therapeutic interventions — 
such as symptoms of diabetes, changes in HbA1c, adverse 
effects, weight changes and glycaemic variability264,265  
— they are artificially restrictive and typically undertaken 
in the clinic at relatively infrequent intervals.

Using newer electronic and mobile computing techno
logies, monitoring QOL in real time is now feasible, and 
offers a more efficient and accurate way to collect data 
and broaden the scientific assessment of QOL data to real-
time surveillance and remote monitoring. Smartphones 
and tablets are much more effective for reporting acute 
diabetes-related and treatment-related events such as 
hypoglycaemia, gastrointestinal symptoms, cognitive 
problems and sleep disturbances than older technolo‑
gies266. Furthermore, they allow for ‘dynamic’ question‑
naires, bridging the gap between more-sensitive but 
more-burdensome longer ‘static’ questionnaires and 
less-sensitive but less-burdensome shorter forms by 
using item response theory and computer adaptive test‑
ing267. Most recently, big data methods have been used 
in patient-centred outcomes research for analysing elec‑
tronic health records, web-based, crowd-sourced social 
media databanks, and intensively longitudinal, electronic 
remote patient-monitoring databases transmitted through 
glucose, blood pressure, weight and activity devices. These 
methods provide promising research opportunities for 
capturing patient functioning and feelings in real time 
and in real-life environments.

Outlook
Long-term normalization of blood glucose levels in 
T2DM depends on delaying or reversing failure of β‑cell 
function to ensure appropriate insulin secretion and on 
improving insulin resistance. New avenues for treatment 
are currently in development268 and might, in combination 
with existing drugs, bring change and enhance our ability 
to control glycaemia. Our ability to prevent and reverse 
advanced microvascular and macrovascular complica‑
tions is limited, and new strategies, some currently under 
investigation, will be required to close this gap (FIG. 8).

Insulin secretion
Progression from altered glucose metabolism to overt 
diabetes occurs as the reduction in β‑cell mass and func‑
tion is further aggravated. Thus, an attractive intervention 
is one that will halt the progressive decline in β‑cell mass 
and function and prevent the need for exogenous insu‑
lin replacement that otherwise follows1. Agents that sup‑
press inflammation, including IL‑1β blockers and salsalate 
(a potent inhibitor of NF‑κB), have shown some promise 
in improving glycaemic control and β‑cell function143,269,270. 
MicroRNAs play a pivotal part in the physiological and 
pathological processes involved in glucose metabolism 
by post-transcriptional regulation of gene expression. 
Particular microRNAs can regulate β‑cell function271, 
exposing key regulatory signalling pathways involved in 
restoration of β‑cell mass, and provide a promising strat‑
egy for improving insulin secretion and β‑cell health in 
T2DM. Identification of novel insulin secretagogues 
that act directly on β‑cells and enteroendocrine K cells 
and L cells in the intestine are under investigation, and 
members of the G protein-coupled class of receptors have 
shown promise272. GLP1 receptor agonists induce β‑cell 
proliferation in rodents273, but studies in humans have not 
demonstrated a similar effect237. A series of novel signal‑
ling pathways have been reported to be strongly associated 
with β‑cell mass restoration. For example, the PI3K– PKCζ 
pathway has been shown to augment glucose-mediated 
β‑cell proliferation, and activation of PKCζ may provide 
a novel approach to increase human β‑cell proliferation274.

Figure 7 | Illustration of the four major concepts in patient-reported outcomes.  The domains, individual modifiers 
and assessment methods for the multidimensional quality-of‑life construct are shown in relation to selected 
patient-centred measures.

Nature Reviews | Disease Primers

Patient-centred measures

Individual modifiers

Genetic Personality and coping Environmental 

Measurement domains

Biological and physiological Symptom status Health perceptions

Assessment methods

Laboratory
and imaging

Remote clinical
monitoring

Electronic daily
diaries

Questionnaires
and surveys

Web-based online
communities

Quality
of life

Pain intensity Social and 
role functionPathophysiological

mechanism Fatigue

Memory loss
Mental

impairments

Physical
symptoms

Emotional
well-being

Mobility

Activities of
daily living

Cognitive
functioning

Cultural

Functional status

P R I M E R

14 | 2015 | VOLUME 1	 www.nature.com/nrdp

© 2015 Macmillan Publishers Limited. All rights reserved



Glucose-stimulated insulin secretion
Mitochondrial metabolism is essential for normal β‑cell 
function275. APPL1 proteins are reported to influence 
mitochondrial function and β‑cells by maintaining the 
expression of several key genes involved in mitochondrial 
biogenesis276. APPL1 also contributes to the regulation of 
both first and second phases of glucose-stimulated insulin 
secretion276 and therefore has potential as a therapeutic 
target for anti‑T2DM drug discovery. Other agents that 
improve mitochondrial function, including the regulators 
of NAD-dependent protein deacetylase sirtuin 1, peroxi‑
some proliferator-activated protein kinase and uncoupl
ing protein 2 (UCP2), may prove to be effective in the 
therapeutic intervention of T2DM277–279.

Glucokinase is a key therapeutic target and serves as 
the ‘glucose sensor’ and glycolysis activator in β‑cells. 

However, multiple glucokinase activators have failed 
because of lack of efficacy or adverse effects280. Glucagon 
receptor antagonists have shown good clinical efficacy, 
although α‑cell hyperplasia and increased levels of 
hepatic aminotransferases may limit their usefulness281. 
Gluconeogenic inhibitors have shown some efficacy282–284, 
but safety issues (hypoglycaemia and lactic acidosis) are 
a concern.

Islet transplantation faces many hurdles285, but encap‑
sulated islets hold promise286. The practicality of trans‑
forming stem cells into insulin-secreting β‑cells that are 
responsive to glucose287 is a long way off. The creation of 
stem cells that imitate natural healthy β‑cells represents 
another option287. However, the concept that stressed 
β‑cells in patients with diabetes dedifferentiate into other 
islet cells raises hopes for reversing this process288.

Figure 8 | Potential therapeutic targets in T2DM management.  Schematic representation of the different targets in 
type 2 diabetes mellitus (T2DM) organized per tissue. AMPK, AMP-activated protein kinase; DAG, diacylglycerol; DGAT, 
DAG acyltransferase; FGF, fibroblast growth factor; FXR, farnesoid X nuclear receptor; GIP, gastric inhibitory polypeptide; 
GLP1, glucagon-like peptide 1; MPC, mitochondrial pyruvate carrier; PDHK, pyruvate dehydrogenase kinase; PGC1, 
PPARγ coactivator 1; PPARγ, peroxisome proliferator-activated receptor-γ; PTP1B, protein tyrosine phosphatase 1B; 
PYY, peptide YY; SGLT, sodium/glucose co-transporter; VCP2, viral citrullinated peptide 2.

Nature Reviews | Disease Primers

Adipose tissue

Intestine 
K and L

enteroendocrine
cells 

Microbiome 

Lower bowel 

Kidney 

SGLT2 and SGLT1 inhibitors 

Brain 

Fusion proteins (GLP1 with
FGF21, glucagon, GIP and PYY)

Appetite suppressants  

Pancreas

PPARγ modulators 
Anti-inflammatory
agents
PGC1 activators
AMPK activators

Glucokinase activators
New GLP1 receptor
agonists
Sirtuin activators
β-cell activation

Muscle

FGF1
PDHK4 inhibitors
Anti-inflammatory
agents
PPARγ modulators

MPC1 and MPC2 inhibitors
PTP1B inhibitors
MicroRNA modulators
AMPK activation
Imeglimin

Liver

FGF1
FGF21
FXR ligands
AMPK
activators

Acetyl-CoA inhibitors
Glucagon receptor antagonist
Glucokinase activator
Glycogen synthase activator
Glycogen phosphorylase inhibitors

PDHK2
inhibitors
Obeticholic acid
Gluconeogenic
inhibitors

Microbiome
mediators
(probiotics)

Metformin
delayed release  

Bariatric surgery 

Bile acid
sequestrants

Cell

MicroRNA
silencing 

MicroRNA DAG 

DGAT1 
and DGAT2
inhibitors 

Nucleus

β-cell 

MPC1
and MPC2
inhibitors 
VCP2
activators
AMPK
activators

Mitochondrion

Glucose-responsive
insulin analogues
Closed-loop
insulin delivery
Stem cells

Glucagon
inhibitors

GLP1

α-cell

P R I M E R

NATURE REVIEWS | DISEASE PRIMERS	  VOLUME 1 | 2015 | 15

© 2015 Macmillan Publishers Limited. All rights reserved



In patients with T2DM who have minimal β‑cell 
reserves, intensive continuous subcutaneous insulin infu‑
sion has proved to be very effective289. In contrast to the 
accuracy needed for insulin delivery in insulin-sensitive 
T1DM, the larger doses of insulin and underlying insu‑
lin resistance in T2DM enable the use of much simpler 
pump devices. Hopefully, this will result in the introduc‑
tion of less-sophisticated and low-price pumps into the 
market. Conversely, closed-loop insulin delivery systems 
that consist of an insulin pump that delivers insulin based 
on an algorithm whose inputs are derived from a con‑
tinuous glucose monitor are advancing quickly in clini‑
cal studies289,290, and this might be an attractive option 
for insulin-dependent, poorly controlled T2DM. Insulin 
administration via injection is a limiting factor for its 
broader use. Inhaled insulin with improved pharmaco
kinetic and pharmacodynamic profiles makes this option 
more appealing to patients291. Another attractive option is 
oral insulin, which is currently in clinical trials and hope‑
fully will mature into a simple and safe alternative for 
insulin delivery292.

Insulin sensitivity
There is a major need for novel insulin-sensitizing agents, 
and many new agents show promise in humans. New 
metformin preparations target the lower bowel, effec‑
tively reducing HbA1c while minimizing metformin 
exposure293. In addition, selective PPARγ modula‑
tors have shown some efficacy as insulin sensitizers294. 
Compounds targeting mitochondrial proteins (mito‑
chondrial pyruvate carrier 1 (MPC1) and MPC2) have 
shown efficacy295. Derivatives of fibroblast growth fac‑
tor 1 improve hepatic and muscle insulin sensitivity in 
animals296 and reduce plasma glucose levels in patients 
with T2DM297. Inhibitors of pyruvate dehydrogenase 
kinase  4 (PDHK4) increase pyruvate oxidation in 
muscle and reduce the supply of gluconeogenic precur‑
sors (lactate and alanine) to the liver, whereas inhibition 
of PDHK2 in the liver decreases gluconeogenesis298. 
Imeglimin, the first member of a new tetrahydrotriazine-
containing class of oral antidiabetics (glimins), has mod‑
est HbA1c‑lowering efficacy and augments both insulin 
sensitivity and insulin secretion299,300. UCP2 activators 
have similarly been shown to improve hepatic and muscle 
insulin sensitivity in rodents.

Accumulation of toxic lipid metabolites (DAG, fatty 
acid acyl-CoAs and ceramides) in muscle and the liver 
causes severe insulin resistance. Inhibitors of DAG acyl‑
transferase 1 (DGAT1) and DGAT2 have yielded con‑
flicting results301,302. Blockade of de novo lipogenesis with 
inhibitors of acetyl-CoA carboxylase reduces liver fat and 
increases hepatic insulin sensitivity in preclinical stud‑
ies303. Liver-targeted mitochondrial uncouplers have been 
shown to reduce liver fat and content and improve insu‑
lin sensitivity in mice304,305. Weight loss drugs (topiramate 
and phentermine extended-release, lorcaserin, bupro‑
pion and naltrexone, and high-dose liraglutide) promote 
fat removal from muscle and the liver and improve insu‑
lin sensitivity and glycaemic control in T2DM306. Bariatric 
surgery provides long-term remission of T2DM307. The 
farnesoid X nuclear receptor ligand obeticholic acid308 

and bile acid sequestrants309 might prove to be useful in 
treating T2DM. Novel fusion proteins, including GLP1 
with fibroblast growth factor 21, glucagon, GIP or pep‑
tide YY, which promote weight loss and enhance insulin 
sensitivity in rodents, are in development310. Inhibitors of 
protein tyrosine phosphatase 1B, a cytosolic non-receptor 
PTPase that has been implicated as a negative regulator 
of insulin signal transduction, have received interest311. 
Several microRNAs are upregulated in diabetes and 
obesity, and their silencing improves insulin sensitivity312.

Specific microbiome profiles render individuals prone 
to develop obesity and altered glucose metabolism313. The 
ability to identify protective microbiome profiles might 
provide a key to the development of obesity and diabe‑
tes interventions. It remains to be determined whether 
specific dietary components are involved in microbiome 
changes and induce unfavourable transitions. Probiotics 
or pharmacological manipulation of microbiome ele‑
ments that favour more ‘healthy’ flora may prove to be 
useful in stemming the ‘twin epidemics’ of obesity and 
T2DM313. Surgical rearrangement of the gastrointestinal 
tract has shown remarkable efficacy in treating obese 
patients with T2DM307,314. Development of minimally 
invasive reversible procedures, such as the duodenal 
sleeve and temporary mucosal barriers, might replace 
surgery in the near future.

Comorbidities
There is great need to address short- and long-term dia‑
betic complications. The most promising therapy for 
the near future is the use of drug combinations (dual or 
triple) that address the pathophysiological abnormalities 
responsible for β‑cell dysfunction and insulin resistance 
and that normalize plasma glucose levels198–200 (FIG. 3). The 
optimal candidates for this therapy are patients at the very 
early stage of their disease or at the prediabetes state7.

Hypoglycaemia remains a critical barrier for intensi‑
fication of care, especially in patients who require insu‑
lin, and poses serious immediate and long-term risks. 
Continuous glucose monitoring with pre-set alarms 
and use of therapeutic agents or regimens that minimize 
the risk of hypoglycaemia are available options. A self-
regulating insulin that is responsive to blood sugar levels 
(SmartCells) is currently under development.

Treatment of established microvascular complica‑
tions remains a major unmet need. Anti-VEGF (vascu‑
lar endothelial growth factor) therapy has changed the 
outcome in many patients with advanced retinopathy, 
but more novel therapies are needed. C‑peptide replace‑
ment therapy315 and ocular inhibition of kallikreins 
and kinin receptor antagonists offer new therapeutic 
avenues316. Angiotensin-converting enzyme inhibitors 
and angiotensin II receptor blockers slow progression of 
nephropathy but do not reverse it317. Endothelin inhibi‑
tors or agents that prevent AGE accumulation are in 
Phase III studies for prevention of microvascular compli‑
cations318,319. SGLT2 inhibitors also are being investigated 
for the prevention of diabetic nephropathy250. Although 
we have agents that can ameliorate symptoms of diabetic 
neuropathy, there is a need for molecules that will prevent 
its development and progression.
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Cardiovascular morbidity and mortality, the major 
cause of death in T2DM, is increased twofold–threefold 
in patients with T2DM320. Hyperglycaemia is a weak 
risk factor for cardiovascular disease, and the factors 
(other than hypertension, dyslipidaemia and enhanced 
coagulation) that are responsible for the increased 

cardiovascular risk in T2DM remain obscure. As T2DM 
is an inflammatory disease, an anti-inflammatory 
approach initiated early in combination with normali‑
zation of cardiovascular risk factors17 before the clini‑
cal appearance of macrovascular disease may prove to 
be effective.
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